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Winding angle distributions for random walks and flux lines
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We study analytically and numerically the winding of a flux line around a columnar defect. Reflecting and
absorbing boundary conditions apply to marginal or repulsive defects, respectively. In both cases, the winding
angle distribution decays exponentially for large angles, with a decay constant depending only on the boundary
condition, but not on microscopic featuré¢onuniversaldistributions are encountered fohiral defects that
preferentially twist the flux line in one direction. The resulting asymmetric distributions have decay constants
that depend on the degree of chirality. In particular, strong chirality encourages entanglements and leads to
broad distributions. We also examine the windings of flux lines in the presence of point imp(ratiel®m
bonds. Our results suggest that pinning to impurities reduces entanglements, leading to a (@armsian
distribution.[S1063-651X96)10606-1

PACS numbdis): 02.50-r, 05.40:+j, 74.60.Ge

I. INTRODUCTION AND SUMMARY In Ref. [17], the following result for the winding angle dis-
tribution for a random walk with steps of finite size is de-
Winding angles of paths are of great interest not only inrived:

mathematics, but also in the physics of polymers, and flux
lines in highT . superconductors. The topological constraints |
produced by the windings of polymef&] or magnetic flux ¢
lines[2,3] around each other result in entangled phases with
slow dynamics. The simplest case that can be studied is thehe same result is obtained in RE§] for the distribution of
Winding of a two-dimensional random walk around a pOint,“big Windings” of Brownian motion around two pointlike
or equivalently, a flux line in three dimensions around a co-winding centers. The relation between “big” and “small”
lumnar pin[4]. In 1958, Spitzef5] showed that the prob- windings is discussed in detail {i8]. Saleur[18] suggests
ability distribution for the winding angle of a Brownian  that the difference between Edq&) and(3) is due to differ-
path around a point is a Cauchy law for large tite.e., ent boundary conditions for the walkers at the winding cen-
ter. A review of many topological and entanglement proper-
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lim,_...p| x= ﬁ) _ 1 1 _ (1) ties of polymers can be found in R@L_Q]. o
Int) 7 1+x2 In this paper, we further study the issue of winding angle

o ) o distributions and their universality, with particular emphasis
Similar Cauchy laws are obtained for winding around several, their applicability to magnetic flux line§Ls) in high-
points in two dimension$6], and around several straight 1 g perconductors. We start in Sec. Il by providing a deri-
lines in three dimension’]. These results are obtained by vation of Egs.(1)—(3) based on conformal properties of ran-
employing a variety of techniques such as standard diffusiogom \alks that do not require any advanced mathematical
equation [5,8-10, path integrals[10,11, or probability  techniques. Although these equations have been known for
theory [12,6,7. By contrast, the winding angle of a self- s5e time. the difference between E(®.and(3) seems to
avoiding walk in two dimensions obeys a Gaussian distribuy,aye never been pointed out, except for the above-mentioned
tion, the scaling variable being=6/y4 Int [13,14. (See  remark in Ref[18]. Our derivation illustrates well the origin
also Ref:[15] for an expansion around four dimensions. and universality of the exponential tail in Eq®) and (3),

As pointed out in Refd.16,17, the above Cauchy law has and explains the factor 2 between their two decay constants.
pathological properties that make its relevance to any physiyve argue that these two cases are applicable respectively to
cal situation ques_tlonable. In particular, because of thgpe windings of a flux line around a repulsive or marginal
slowly decaying tails at large, the averages of bott’ and  cojumnar defect. Actually, most columnar defects are attrac-
|6| are infinite. The origin of this divergence is that a finite five and localize the flux line to their vicinity. The corre-
segment of the Brownian walk can wind infinitely often sponding probability distributiongfor walkers with initial

around a point center. While this is correct for an idealizedang final points close to the winding centare also calcu-
random walk, in any physical system one expects a cutoffated in Sec. 1l D.

due to either finite diameters or stiffness. The case of a Tg test the generality of the analytical results, we per-
Brownian walk in two dimensions around a disk of finite formed a number of numerical tests that are described in Sec.

diameter was studied in Ref16]. The resulting winding |, Simulations of random walks were performed on both
angle distribution i$16,18 square and cubic lattices. For reflecting boundary conditions
29 - we chose a winding center that was shifted from the lattice
lim IOA(X= _) = ) (2)  sites crossed by the walker. For absorbing boundary condi-
toe Int/ 4 cosR(mx/2) tions, the center was one of the lattice sites that the walkers
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were not allowed to cross. A transfer matrix method can béashes for the latter because of the exclusion zone set up by
used to evolve the winding angle distribution with the num-self-avoidance. It is thus expected that properties of the
ber of steps. Despite a rather slow convergence to the aswinding center (size, absorbing versus reflecting nature,
ymptotic limit, the numerical results do indeed support thechirality) are irrelevant for self-avoiding walks. The ideal
universality of distributions given in Eq$2) and(3). walks, on the other hand, return to the origin quite often, and

In the course of numerical tests, we encountered one casgon rescaling see winding centers of different size. The
(reflecting boundary conditions for a directed path along theassumption that different scaled portions of the ideal walk
diagonal of a cubic lattigethat did not conform to any of the are self-similar is not correct.
above expected universality classes. Further examination re- There is one case where both arguments should hold: An
vealed that we had inadvertently constructechaal defect  ideal walk around a point winding center. The argument
upon encountering the defect, the path had a statistical advased on self-similarity actually states that the final distribu-
vantage to wind in one direction as opposed to the other. Ition is obtained from the composition oftimdependent ran-
the language of random walks, this corresponds to a rotatindom variables. If each variable has a finite variance, the
winding center. The breaking of the symmetry at the centeoverall distribution will be Gaussian. If not, othétLevy)
is in fact a relevant perturbation, and leads to the probabilitydistributions are possible. The Cauchy distribution is in fact
distribution discussed in Sec. IV. Although we do not yeta limiting case for widely distributed variables. The require-
have a complete analytic understanding of this universalitynent that both arguments should hold immediately selects a
class, we can account for certain features of this distributionCauchy distribution.

In particular, weak chirality leads to narrow asymmetric dis- The scaling argument, which by no means is claimed to
tributions, while for strong chirality both wings of the distri- be exact, should apply to other self-similar walks where the
bution are widened, i.e., strong chirality of the defect en-probability of return to the origin is small. An interesting
hances entanglements. example is provided by directed paths in random mE2iea,

All the distributions examined in Secs. -1V describe the which, for example, describe the behavior of a flux line in
windings ofideal random walks, and in all cases the appro-the presence dfjuenchegpoint impurities. Typical wander-
priate scaling variable is the combinatior=26/Int. This  ings of such paths scale & with v~0.62>1/2. The pin-
universal feature is due to thiglarkovian nature of these ning by impurities greatly reduces the probability of the
walks, and can be explained as follows: After timethe  walker returning to the origin, and the above arguments
walker has a typical distance(t)e+/t from the starting again suggest that the winding angle distribution is Gaussian.
point, which is chosen to be close to the winding centerAlthough certainly not conclusive, the numerical results re-
Assuming that (t) is the only relevant length scale, dimen- ported in Sec. V appear to support this prediction. Typical
sional arguments, combined with the Markovian propertywinding angles thus scale adnt as opposed to tnin the
suggest thatir/do=rf(6). The rotational invariance of the pure case. This simple example thus suggests that topologi-
system implies that( #) must be a constant; i.e., the increasecal entanglements become relatively less important in the
in winding angle cannot depend on the number of windingsgpresence of pinning to impurities.

or angular position. Hence, The results of this paper point out the rich behavior al-
ready present in the simplest of problems involving topologi-

dr dt cal defects. Properties of the winding centéinite size,
dgec = o< 7~ =d(Int), (4 chirality, etc), interactions, and various types of randomness

are all potentially relevant, leading to different universal dis-

leading to a scaling variable proportional #fint. tribution functions. These results could also produce some

Because of their non-Markovian nature, we cannot applynteresting physical manifestations. For example, we demon-
the arguments of the preceding paragraptsédf-avoiding strate in Sec. VI that there is a sharp crossover between free
walks Indeed, such walks have a Gaussian winding angl@nd coiled configurations if there is an energy proportional to
distribution in the scaling variablg= 6/\int [13,14. The the winding number.
self-similarity of the walk suggests the following scaling ar-
gument: Starting from the origin, divide the walk into seg-
ments of 1, 2,. . . ,2"~t/2 steps. Since theth segment is at !l- DERIVATION OF WINDING ANGLE DISTRIBUTIONS
a distance of roughly 2’ from the centefwith »=23/4) and A. Spitzer's law
has a characteristic size of the same order, it is reasonable to
assume that each segment spans a random a&pgdé order
one. Under the mild assumption that the séwm='_,0,,
satisfies the central limit theorem, we then conclude ¢hiat

Gaussian distributed with a variance proportionahtelnt. transiating it into a more physical language that does not rely

Siir i s, ety ey v 2 2y i gl b vgcnt s
x= 6/+/Int for self-avoiding walks, and= 6/Int for ideal ppINgs.

walks were first given in Ref13]. Let

We can ask why the above argument of self-similarity z(t) =x4(t) +ixo(t) (5
does not apply to ideal walks. The reason is the relevance of
the finite winding center. An important difference between
ideal and self-avoiding walks is that the probability of return-represent the original walk in the complex two-dimensional
ing to the winding center at the origin asymptotically van- plane. The time evolution of each random walker satisfies

Before studying the winding of a Brownian path around a
center of finite diameter, we first sketch a derivation of
Spitzer’s law in Eq(1). We follow the approach in Reff12],
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dz=y(t)dt, (6) Pi(7)=[fod7 p(7') is the probability for the walker to hit
the line at least once before time Since after hitting the
where the complex random velocity has zero mean and igall the walker is equally likely to proceed in either direc-
uncorrelated at different times, with tion, the latter is also twice the probability that the end point
of the walk is beyond the line at, and hence given by

(n(t)p*(t'))=2D5(t—t"). (7)
The radius of the walker and its winding angle can be ex- »exp(—r?/27) rexp( — 1/2s)
tracted from Py T):2J1 \/ﬁ- dr= 0 \/ﬁ ds.

L) =Inz(t)=p(t)+io(1), tS) o

The derivative gives
wherep=lnr=ln\/x2l+x22. Sinced= n(t)dt/z(t), the sto-
chastic motion of the walker in the new complex plane is dP, 1 1
highly correlated to its location. This feature can be removed pi(7)= e 3 exr{ - 2—)
by defining a new time variable T mT T
dt ) Since the vertical and horizontal components of the walk are

dr= 2(t)]? independent, we finally obtain

f h walker which |
or each walkey which leads to exp(— 1/27) exp(—x2/27)_ 1 1

d¢=pu(7)d7, with u(7)=2* (1) 7(t). (10) p(x):jodT 2n  2mr  mlexX®

Since L . . .
which is Spitzer’s law, exact in the limtt—oo.

(u(r)p*(7'))=2D|z(t)[?8(t—t")=2D &(7—7'),

11 B. Repulsive defects and finite absorbing centers

the evolution of{(7) is that of a Brownian walk. The unphysical situation that a path element of finite
For simplicity we choose the initial condition length can wind infinitely often around the origin can be
{(t=7=0)=0; i.e. the original walker starts outat1. We  removed by introducing a winding center of finite size. A FL
also set the diffusion constant d=1/2, so that the mean winding around a repulsive columnar defect cannot penetrate
square distance over which the walk moves during a tilse  the defect, and all configurations where the FL and the defect
(r?(t))=t. The probability thatr(t) is within an interval intersect have to be removgtb]. This situation corresponds

[\/Ft(l‘f)’z, \/;t(1+e)/2] around its mean value oﬁt, to a random walk around an absorbing winding center. Two
directed polymers with hard-core interaction winding around

i+ erzexp( —r?/2t) each other are described by the same situation, the radius

p(t.e)= f\;t(le)/Z z—mZ”rdr now being the relative distance between the two polymers.

We choose a disk of radil®<1 around the origin, which
€2 cannot be entered by the Brownian walkt). A path of
= Lrs,zeXp(_s)ds' (12 lengtht now has a maximum winding angle ofR. The
walk is again started froma(0)=1, and after a long time,
approaches unity in the limit—. In this limit, the distance its end point is almost certainly at a distancebetween
r from the starting poinz=1 is identical to the distance #t®~ 9”2 and J#t(*<2 from the origin, as given by Eq.
from the origin, andb(t, €) is identical to the probability that (12). (The excluded disk of radiuR< /t has negligible in-
{(7) is in the interval[0.5(1- €)Int,0.5(1+ €)Int]. If we  fluence in this limit) The random walks in the complex
shrink the complex plané by a factor of (In)/2, the walker plane {=Inz consequently have real values in the interval
is within a distances of the line with a real value of unity. [0.5(1— €)Int,0.5(1+ €)Int] as before. But now the walks
Thus, all walks of lengtht in the z plane are mapped on {(7) cannot go to the left of a line at=InR. The probability
walks that hit the line with a real value of unity for the first densityp,(x) for having a scaled winding angie=26/Int is
time. Since there is a separate transformati¢) for each therefore identical to the probability density that a random
walker, walks of the same lengthmap on walks of different walk starting at the origin hits a line at distance one, for the
length 7. (To be precise, we also have to shrink the timefirst time, at heighk without going beyond a line at distance
scale 7 when shrinking the/ plane, but for simplicity we 2|InR|/Int on the opposite side.
denote the new time again hy) Let P,,(y,7) denote the probability that a Brownian
The imaginary coordinate of the hit is now related to the walk starting aty e[a,b] hits the pointb for the first time
winding angle byx=24(t)/Int. Thus, in the limitt—«, the  during a time intervalr, without hitting pointa previously.
probability p(x)dx is precisely the probability that a Brown- If we consider the pointa andb as absorbing boundaries,
ian walker (Z/Int) starting from the origin hits a vertical this is identical to the probability that the walk is absorbed at
line at a distance one from the origin, for the first time, at aboundaryb before timer. Since for sufficiently smallA 7,
height betweerx and x+dx. We therefore need the prob- the walker is only a short distanagy from its starting point,
ability density p1(7) that the first hit is atr. Its integral we have
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(~_ 260 )_ T
Pa| X= In(t/R?)| 4 cosh(mx/2) (14

P b T)=jxd(A) ! exp[—(Ay)2
a,bly, o y \/m_ 2A T

X[Pap(y+Ay,7—A7)
This is identical to Eq(2), sincex=x for larget. The use
+Pap(y—Ay,7- A7 2 g

of the variableX is, however, more appropriate, since it

Expanding the above equation to the orderAdfindicates ~Makes the argument of the logarithm dimensionless, and ex-
that P, ,(y, ) satisfies a diffusion equation. The appropriatePlicitly indicates the basic time unit. The above distribution,
boundary conditions ard, ,(a,7)=0 and P, u(b,7)=1 which is exact in the limit—c, has an exponential decay
with the initial valueP, y(y,0)=0, resulting in[21] for largeX, in contrast to Spitzer's law in Eq1). In particu-
lar, the mean winding angle is now finite. The analogy to
y—a 2 “o(—1rtt Tyv(y—a) random walkers in the plang confined by the two walls,
Pap(y, =13+ =T sm( b—a provides simple physical justifications for the behavior of the
winding angle. In the presence of both walls, the diffusing
1
xexp{ 5

particle is confined to a strip, and loses any memory of its
starting position at long times. The probability that a particle

The probability that the walk is absorbed at the right-han

boundary during the time interval[r,7+d7] s

7TV2

_b_a T|.

that has already traveled a distarca the vertical direction
0oroceeds a further distanc® without hitting either wall is
thus independent of, leading to the exponential decay. On
o the other hand, if there is no confining wall on the left-hand
d7o,P ,7). Note, however, that[,d7dP , . . ) o : o
=T(yT—Zl))5{bT—) a), i.e., equal to the total ffrgctqi-on oaf’bpgrtqi-():les side, the particles may diffuse arbitrarily far in that direction,
absorbed at the right-hand bounddirversely proportional making it less probable to hit the wall on the right hand side.
to the separations from the boundayiedo calculate The absence of a characteristic confining length thus leads to
pa(x), we need the fraction of these walks absorbed betweeH{1€ unphysical divergence in Spitzer's law.

7 and 7+dr, equal to[(b—a)/(y—a)]d,P. Hence (with We also expect that different shapes of the winding center
a=2 InR/nt, b=1 andy=0) do not modify Eq.(14). This is because of the division by
Int/2, which maps any excluded shape to the vertical line at
= 1-a dP,44(0,7) exp —x*/27) a=0 for long enough times. However, different shapes
Pa(X)= fo dr—r —= o should result in different effective values fB; and the time

constant in Eq(14). For long times, the polar angle of the
particle may take any value between 0 and @ith equal
probability, and the particle sees an averaged radius of the
winding center.

The crossover to Spitzer's law in the limR— 0 is not
apparent from the above expressionfa(x). The transition

o * -1 v+1 TV
=f dr>. =D sin
0 v=1

2mr a(l—a)

mTra
1—-a

F{ 1 mv \? X2 . L . .
xexg — — —— can be made in the initial equation fpr(x), but not in the
2\1-a 27 final result of Eq.(14), where time is measured in units of
R2. The time scale in Spitzer's law is set by the distance of
(-1 [ wva mv|X| the initial point from the winding center, which is infinite in
—;1 a MN1=3a exp{ T - units of the radius of the winding center. Consequently one

time unit in Eq.(1) corresponds to infinitely many time units
The last step is achieved by first performing a Fourier transin Eq.(14), and the limits—o or R—0 orx—0 in Eq.(14)
form with respect to, followed by integrating over, and  correspond to the limit—0 or x—o in Eq. (1).
finally inverting the Fourier transformAlternatively, ther
integration can be performed by the saddle point mejhod.

the limit of larget, the variablea is very small, and we can C. Neutral defects and reflecting winding centers
replace the sine function by its argument. Taking the sum o _ o
over v, we find For windings around several point centers, or the winding

of a random walk on a lattice around a point different from
the vertices of the latticg,17], no configurations are forbid-

T exdg wx/(1—a)] den, and no walks are removed. The resulting winding angle
PAC)= T3 Texgmxi(1—a) T+ 112 (13 distribution in both cases is given by E(). The random
walk on a lattice can be regarded as a model for a directed
Changing the variable from to polymer of finite stiffness, the step size being of the order of
the persistence length. This situation applies to magnetic FLs
—_ X 20 winding around a columnar defect that is marginal, i.e., nei-
X= (1-a) - In(t/R?)’ ther attractive nor repulsive. We can obtain E8). by re-

peating the calculations of the previous subsection, but re-
and noting thap,(x)dx=pA(X)dX, leads from Eq(13) to placing the absorbing boundary conditiBg y(a, 7) =0 with
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the reflecting conditiorzf)Pa,b(y,r)/ay|y:a=0. There is thus  walks is given by Eq(14), with t replaced byt/2. The prob-
no current leaving the system at pomtand walkers that hit ability that a walk that returns to its starting point has a

the winding center are reflected. We then find winding angled is therefore obtained by adding the prob-
. abilities of all combinations of two walks of lengti2 whose
2 1 ([#(v+1/2)(b-y) winding angles add up té, i.e.,
Pap(y:)=1= 2~ S'”( b—a
O(,;(,):fw q ™ T
1{m(v+1/2)\2 Pa g cosi(my) 4 cosh[ m(X—y)]
Xexp —z|———| 7 (15
2 b—a —~ —~
_om (mX ) an
and 2 sintf(wx/2) | 2 col ’
[, 9Pa1(0,7) exp(—x?/27) whereX=26/In(t/2R?). Surprisingly, this result is different
PrROO= | dr——- oy from the one given in E¢4.1) of Ref.[18]. We are not sure
of the origin of this discrepancy, but note that the result in
* 1 m(v+1/2) Ref.[18] has a divergence ai=0 that is unphysical.
= 2 l_asin 1-a ) If in place of convoluting two absorbing probability dis-
v=0 tributions, as in Eq(17), we use the probability distributions
m(v+1/2)|X| for reflecting boundary conditions, the final result is modified
X - to
p[ (1-a)
1 om X
_ PRX)=5 S (18)
2(1—a)cosi mx/2)’ R 2 sinh(7x/2)
or, equivalently, For large X~x, the above two expressions decay as
X exp(—mx) andx exp(—mx/2), respectively. A FL of length
_ L is broken up into roughly./I, segments between contacts
PR(X)= 2 coslimx/2)’ (16) with the attractive columnar defect. We can assume that the

winding angle of each segment is independently taken from
where again time is measured in unitsR#, and the limit  the probability distribution in Eq(17) with t~I,. Adding
t—o has been taken. For large where the walk has lost the winding angle distributions of all segments leads to a
the memory of its initial distance from both walls, this prob- Gaussian distribution centered aroufd 0, and with a vari-
ability decays exponentially as exp@x/2). A random walk ance proportional td In(I,)/I,. Similar Gaussian distribu-
confined between an absorbing and a reflecting wall thafions are also obtained for diffusion confined to a disk of
have a distance 1 can be mapped to a random walk confinduhite radius[22].
between two absorbing walls at distance 2. After rescaling
the wall distance and ﬂ'% coordinate by two, this explains IIl. UNIVERSALITY OF THE WINDING ANGLE
the factor 1/2 between the decay constants in the tails of the DISTRIBUTION
distributions in Egs(2) and(3).

At first sight it may seem surprising that the winding
angle distribution in Eq(16) for random walks around a
reflecting center of finite diameter is identical to the distri-

A magnetic FL winding around an attractive columnar pytion of “large windings” for Brownian motion around
defect of radius, and binding energyJ, per unit length is  two pointlike center$6], or to distribution for random walks
bound to that defect. If the temperature is above a crossovey finite step size[17]. The increase in winding angle is
temperaturél™* «cby/Uy, the line is only weakly bound and [argest when the walk is close to the winding center, and
wanders horizontally over the distance of the localizationshould thus be quite sensitive to the lattice structure, or the
length |, (T)=beexd (T/T*)?] [4]. The mean vertical dis- ratio between step size and winding center size. However, a
tancel , between consecutive intersections of the FL with thecloser examination of the random walks in the scdlgdane
defect is consequently proportional pr. Over this distance reveals that, in the limit—o, almost no increase in the
the FL can be approximated by a directed walk, which rewvariableX occurs when the walker is within a certain finite
turns to its starting pointthe winding centerafter a time  distance from the winding centécorresponding to an infi-
l,. nitely small distance from the reflecting wall in the scaled

Using the result in Eq(14), we can derive the winding ¢ plang. A similar conclusion was reached in RE8], where
angle distributionpx(X) for such confined random walks. the two-dimensional plane is divided into three concentric
Each walk that returns to its starting point after tim@n the  regions. It is shown that the contribution of the middle region
z plang is composed of two walks of lengti2 going from  to the winding angle scales aént, compared to a contribu-
the starting point ta(t/2). As we have seen in Sec. Il A, tion proportional to It in the outer region. Hence, micro-
almost all walks of lengtti/2, when mapped on the plane scopic details do not enter the winding angle distribution,
2¢/In(t/2), have their end point on a vertical wall at distanceand Eq.(16) holds as long as there is a winding center of
1 from the origin. The winding angle distribution for these nonvanishing siz€or, equivalently, an upper cutoff to the

D. Attractive defects and returning walks
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FIG. 1. Winding angle distribution for random walks on a  FIG. 2. Winding angle distribution for random walks on a
square lattice witfreflectingboundary conditions fot=38 (dot-  square lattice withabsorbingboundary conditions. The symbols
dasheql 152 (long dashefl 608 (dashed 2432(dotted, and 9728  and the variables are the same as in the previous figure. The thick
(solid). The horizontal axis ix=26/In(2t). The thick solid line is  solid line is the analytical result of Eq.2).
the analytical result of Ed. 3).

) ] o o smaller values of the scaling variable= 2 6/In(2t) are due to
maximum possible winding angle per unit timand as long  the slow convergence to the asymptotic limit. Since the scal-
as no walk coming close to the winding center is absorbeding variable depends logarithmically on time, the asymptotic

If a walk hitting the winding center is absorbed with a |imit is reached only for large In Note that the only free
nonvanishing probability, almost all walks are absorbed inparameter in fitting to the analytical form is the characteristic
the limit t—, and the winding angle distribution of the time scale appearing inside the logarithm. Witmeasured
surviving walks is given by Eq(14). As for reflecting in units of single steps on the lattice, we found that a factor
boundary conditions, microscopic details of the system d@ in the scaling variable provides the best fit. In the limit
not influence this distribution. Apart from these two univer-t—, different scales of give of course the same asymp-
sality classes, we shall later encounter a third class of walktic winding angle distribution.
corresponding to random motion around a rotating winding To further test the universality of these distributions, we
center; the winding angle distribution in this case depends oflso performed simulations of a flux liridirected pathpro-
the rotation speed of the center. In this section, we checkeeding along the diagonal of a cubic lattice in three dimen-

numerically the former situations, where the symmetry beSions. The FL starts at (1,0,0), and at each step increases one
tween - 6 is not broken. of its three coordinates by 1. We determined the winding

We performed computer simulations of random walks on@nd!€ distribution around the diagonal (1,1,1) direction, ex-
luding from the walk all points that are on this diagofel

a square lattice with both reflecting and absorbing boundan? IS | defect ding to th f
conditions. Reflecting boundary conditions are simply regld EPUISIVE columnar detect, corresponding to the case of an

ized by choosing a winding center different from the vertices"’lbsorblng winding centerThe excluded points lie on the

. origin when the FL is projected in a plane perpendicular the
of the lattice, anq thus never cr_ossed by the walktlar.. On th‘(z:‘iia(‘:]gonal. A cutoff of 223 i]n system sige wan) ingposed for the
OFheF hand, to §|mulate absorbing boundar_y conditions, th?ransfer matrix calculations. The winding angle distribution
W|_nqllng center Is ch_osen as one of the lattice .S(m/. the p(x=28/Int) is shown in Fig. 3 for different times. As for
origin), but no walk is allowed to go through this point. — {he square lattice, an exponential tail with a decay constant

.The winding angle.dlstrlbuuons are most readily obtainedyt .- can be seen clearly. Our numerical results, as well as
using a transfer matrix method that calculates the number ghe analytical considerations, thus indicate clearly that the
all walks with given winding angle and given end point after winding "angle distributions for reflecting and absorbing
t steps, from the same information after1 steps. The poundary conditions are universal and do not depend on mi-
winding center is at (0.5,0.5) for reflecting boundary condi-croscopic details.
tions, and at the origin for absorbing boundary conditions. Due to the special properties of directed paths along the
The walker starts dtl,0), and the winding angle is increased diagonal of the cube, the case of reflecting boundary condi-
or decreased by 2 every time it crosses the positive branch tions leads to an asymmetry between windings in positive
of the x, axis. Due to limitations in computer memory, we and negative directions. This is because it takes only three
applied a cutoff in system size and winding angle for timessteps to make the smallest possible winding in one direction,
t>120, making sure that the results are not affected by thi®ut six steps in the opposite direction. This situation is dis-
approximation. The largest times usee,9728, required ap- cussed in detail in Sec. IV.
proximately 3 days to run on a Silicon Graphics Indy Work-
station.

Figures 1 and 2 show the simulation results for the two
cases. The asymptotic exponential tails predicted by theory So far, we have only considered situations that are sym-
can clearly be seen; deviations from the theoretical curve fometric with respect to the anglessd. For directed paths on

IV. CHIRAL DEFECTS
AND ROTATING WINDING CENTERS
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0 disk that does not set the surrounding gas or liquid into mo-
10 ' ' ' ' tion.

Since this angular symmetry breaking is already present
in the above simple example of a directed walk, it is also
10 B 1 likely to occur in more realistic physical systems, such as
with screw dislocations. We thus use the tezhiral colum-
nar defect to indicate that each time the FL comes close to
107 8 the defect, it finds it easier to wind around in one direction as
opposed to the othefOf course, to respect the reflecting
boundary conditions, there must be no additional interaction
10 ' N . with the defec). After mapping to the rescaled plane in-
troduced in Sec. Il, the above situations can be modeled by
RN an upward moving reflecting wall on the vertical axis. Each

107 ‘ ) . . RN time a Brownian walker hits this wall, its vertical position
0.0 10.0 20.0 30.0 x=26/Int is increased by a small amouniA2/Int. Let us
X now determine the net shiftx in x due to the motion of the
wall for a walker that survives for a time in the rescaled

FIG. 3. Winding angle distribution around the preferred direc-/ plane, before it is absorbed at the right-hand wedcall
tion for a flux line (directed pathin three dimensions fot=243  thatt is the time in the original system, whiterefers to the
(dot-dashe)j 729(I0ng dashe}j 2187(dashe¢|, 6561(d0tted, and time in the resca'eq p|ane, after the conformal mappmg
1_9 6_84(solid). Th_e horizontal axis ix=26/In(2t). The thick solid To obtain the full solution, it is necessary to solve the
line is the analytical result of Ed.2). two-dimensional diffusion equation with moving boundary

) ) ) ) conditions. Since we are mainly interested in the exponential
certain lattices, however, this symmetry is broken, as meng,jis of the winding angle distribution, we restrict our analy-
tioned in Sec. Ill. A directed vyalk_that proceeds at gach steRis to the limit of large times-, and determine the shift in
along the+x,, +Xx,, or +Xx3 direction on a cubic lattice can y gye to encounters with the reflecting moving wall in this
be mapped on a random walker on a two-dimensional triangmit. A Brownian walker that has survived for a sufficiently
gular lattice as indicated in Fig.(d). Each bond can be long time 7 forgets its initial horizontal position. The mean
crossed in only one direction, and the winding center for, ymper of encounters with the reflecting wall, and conse-
reflecting boundary conditions must be different from thequently the shiftAx in x due to the motion of the wall, is
vertices of the lattice. It is apparent from'this figure tha.t theihen expected to be simply proportional to the considered
random walker can go around the center in three steps in oRgne interval. Assuming the validity of the central limit theo-
angular direction, but in no less than six steps in the otheform in the limit 7—, the probability distribution of\x is

direction. . S _ o given by
An alternative description is obtained by examining the

position of the walker after every three time steps. The re- (Ax— ar)?
sulting coarse-grained random walk takes place on a regular pA(AX)= ex;{ ———
triangular lattice, but now the walker has a finite probability N2mBT 2p°T

of 3x 2/3*=2/9 of staying at the same site. If this site is one )
of the three points next to the winding center, the winding ! N€ Parameters: and § are related to the velocity of the

angle is increased by72in one of the six possible configu- Wall (chirality of the defedt by a=pxv. Presumably Eq.
rations that return to the site after three steps. In other word$19 €an be obtained directly from properties of random
the walker has a finite probability of having its winding v_valks_, providing the exact coefficients in the above propor-
angle increased in the proximity of the center. The amount ofionality. _

this biased increase in angle depends on the structure of the W€ can now modify Eq(16) to

lattice and will be different for other directed lattices. An

(19

equivalent physical situation occurs for Brownian motion pg(x):fxdew d(AX)pA(AX)&Payl(O’T)
around a rotating winding center, e.g., a rotating reflecting 0 —o aT
o " 1 F{ (x—Ax)?
AT exp — 2
I | 2mr T
| O 1 A :de IP,4(0,7)
-t “—b» 0 T—&T
| B |
A A 1 [{ (x—ar)?
P ) X exg — .
" V2mr(1+ B?) 27(1+B%)
b)

In the limit of largex it is sufficient to take the first term in
FIG. 4. Triangular and square lattices with directed bonds. Théhe series expansion fdt, ,(0,7) given in Eq.(15), leading
winding centers are indicated by the open circle. to
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FIG. 6. Winding angle distribution for a random walk on a
directed square lattice fdar=38 (dot-dashef] 152 (long dashej
608 (dashedl, 2432 (dotted, and 9728(solid).

FIG. 5. Winding angle distribution around the preferred direc-
tion for a random walk on a directed triangular lattice fer243
(dot-dashey 729 (long dashey] 2187 (dashegl 6561 (dotted, and

19 684(solid). The scaling variable is=26/In(2t). The thick solid
line is the distribution given in Eq23). V. WINDING ANGLES IN RANDOM MEDIA

FLs in highT. superconductors are pinned by oxygen im-

. ax |X| 2 purities. Such pinning is quite essential to enhancing the cur-
Pr(X)=ex 1+,82_1+—,82\/a2+7(1+:32) : rent carrying capacity of the superconductor in its mixed
(20) phasg[_23]. Actually, the pinning_to the{quenchebj random

impurities fundamentally modifies the properties of FLs,

leading to glassy phases. The simplest example is again a
single FL as discussed in the previous section. The behavior
of the FL in the presence of point impurities can be modeled
| f th tial tails. F Il val £ chiralit by a directed path on a Iattic_e with random bond en_ergies
slopes of Ih€ exponential talls. =or smatl values ot chiral y[20]. In three or fewer dimensions, the line is always pinned
the slopes on the two sides are changedrf a. Due 10 ¢ g fficiently long length scales. An important consequence
the velocity dgpendence, these asymmetric d|str|but|o_ns &8 the pinning is that the path wanders away from the origin
cIeaery nonuniversal. At large chiralities the slopes vanish agnych more than a random walk, its transverse fluctuations
al B4, resulting in quite wide distributions. Apparently scaling ast”, where v~0.62 in three dimensions, and
strong chirality of a defect increases the probability of en-;,—=2/3 in two dimension$25,26. The probability of such
tanglements. The scaling variablexs 26/In(2t). The thick  paths returning to the winding center are thus greatly re-
solid line is the distribution Eq( 3). duced, and the winding probability distribution is expected to

Figure 5 shows our simulation results for the winding change.
angle distribution for a walk on the above mentioned di- We examined numerically the windings of a directed path
rected triangular lattice. The asymmetry due to the shift isalong the diagonal of a cubic latti¢eee Fig. 4a)]. To each
clearly visible, and the winding angle distribution is wider bond of this lattice was assigned an energy randomly chosen
than for a stationary wall. This case thus exemplifies thébetween 0 and 1. Since the statistical properties of the pinned
strong chirality limit discussed in the previous paragraphpath are the same at finite and zero temperatures, we deter-
We also simulated a square lattice with directed bonds agined the winding angle of the path of minimal energy by a
indicated in Fig. 40). The corresponding winding angle dis- transfer matrix method. For each realization of randomness
tribution is shown in Fig. 6. The distribution is again asym-this method 20] finds the minimum energy of all paths ter-
metric, but not as wide as in the previous one, and moréninating at different points, and with different winding num-
similar to that expected in the weak chirality regime. bers. This information is then updated from one time step to

A somewhat different situation is discussed in H@#], the next. From each realization we thus extract an optimal
where the winding of a polymer around an attractive andangle as a function af. The probability distribution is then
chirally asymmetric rod is studied. Below the localization constructed by examining 2700 different realizations of ran-
temperature, the polymer is bound to the rod and has a finitdomness. To improve the statistics, we averaged over posi-
mean winding angle proportional to its length. Above thetive and negative winding angles.
localization temperature, the chirality has no effect at all on  The resulting distributions are shown in Figs. 7 and 8. The
the winding angle, due to the hard-core repulsion at shorscaling variable in Fig. 8 is @Int and the results are com-
distances, a situation that corresponds to absorbing boundapared to Eq.(2), which is expected in the pure system. A
conditions. We expect that the reflecting boundary condimuch better fit is achieved with the scaling variable
tions discussed in this section may be relevant near the lo«= 6/2\/Int as indicated in Fig. 7. This scaling form is moti-
calization temperature. vated by that of self-avoiding walks, which in two dimen-

valid for large|x|. The effect of the moving wall on the
winding angle distribution is thus a systematic shift in the
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t—oo for both paths, and thus the properties of the winding
center are expected to be irrelevdmt.simple scaling argu-
ment suggests that the number of returns to the origin scale
asN(t)=1/t1~27.] The conformal mapping of Sec. Il cannot
be applied in either case: The density and size of impurities
in a random medium becomes coordinate dependent under
this mapping, as does the excluded volume effect. The wind-
ing angle distribution for self-avoiding walks in E1) has
been calculated using a more sophisticated mapiddLg.

As a similar exact solution is not currently available for FLs
in random media, we resort to the scaling argument pre-
sented next.

Let us divide the self-avoiding walk, or the directed path,
in segments going frotf2 tot, fromt/4 tot/2, etc., down to
some cutoff length of the order of the lattice spacing, result-
ing in a total number of segments of the order dof Ifhe
FIG. 7. Winding angle distribution for a directed path in a ran- statistical self-similarity of the walks suggests that a segment

n
dom three-dimensional system fo= 120 (dotted, 240 (dashed, of length t/2" can be mapped onto a segment of length

n+1 H H
480 (long dashelj 960 (dot-dashel] and 1920(solid). The thick U2 after rescaling by a factor of 1/2Under this rescal-
solid line is the Gaussian distribution in E@2). ing, the winding angle igstatistically speakm)gcon;eryed,
and consequently all segments have the same winding angle

prancl (X)

sions follow a Gaussian distribution distribution. Convoluting the winding angle distributions of
all segments, and assuming that the correlations between
P 1 segments do not invalidate the applicability of the central
Psal X= —) = —exp —x?). (21)  limit theorem, leads to a Gaussian distribution with a width
2yt mw proportional to It. This argument does not work for the

o ) random walks considered in Secs. Il B—II D, since the finite

The result of the data collapse in Fig. 7 agrees well with thgagiys of the winding center is a relevant parameter. Differ-
Gaussian distribution ent segments of the walk are therefore not statistically
equivalent, as they see a winding center of different radius

4 /1.5 2 after rescaling.
pra”‘( X= 2\/ﬁ> B ?exp( ~1.56). 22 Another interesting quantitity to study is the difference in
free energy between configurations of different winding

Directed paths in random media and self-avoiding walkshumbers. This provides an estimate of the free energy that
share a number of features that make the similarity in thei€an be gainedor lost by a FL upon changing its degree of
winding angle distribution plausible. Both walks meanderentanglement. In the pure system, this quantity can be ob-
away with an exponent larger than the random walk value ofained directly from the winding angle distribution. For large
1/2. (The exponent of 3/4 for self-avoiding walks is larger t, the difference in free energy between configurations of
than »~0.62 for FLs in three dimensionsAs a result, the ~winding numbem and 0 is calculated by expanding H®)
probability of returns to the origin is vanishingly small in the for smallx=4sn/Int, and is given by

7T4n2

(Int)= -

10° — | , — F(n)—F(0)=kgT (23

(The corresponding result for absorbing boundary conditions
is larger by a factor 2.

In the presence of quenched randomness, there exists no
obvious relation between the free energy and the entropy,
and we therefore determined the difference between energies
of minimal paths of different winding numbers. The simula-
tion results are depicted in Fig. 9, suggesting atldiepen-
dence on length, although we cannot rule out some larger
power of 1/Irt. The slopes of the curves in this figure have
ratios of approximately 1/3, 1/6, and 1/2, different from 1/4,
1/9, and 4/9 for am? dependence. We could not collapse the
data using the scaling variabié /Int as in Fig. 7. Somewhat

X surprisingly, the difference in energy vanishes in the large
limit, as in Eq.(23). Naive arguments may have suggested

FIG. 8. Same distribution as in previous figure, but with that the energy cost associated with changing the winding
x=26/Int. The thick solid line is the distribution for the pure case humber either saturates at a finite value, or possibly even

given in Eq.(2). grows ast?’~! as in typical energy fluctuatior/0]. This

prand(x)
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the walk leads to a number of exponentially decaying dis-
tributions: If there is a conservation law for the walkénms-
flecting boundaries or neutral defegtave obtain the distri-
bution in Eqg. (3). Removing this conservatiofabsorbing
boundaries or repulsive defegteads to the distribution in
Eq. (2) whose tails decay twice as fast. Constraining the end
points of the walker to the vicinity of the winding center
leads to the related distributions in Sec. Il D.

A completely new set of distributions is obtained for chi-
ral defects, where the walker is preferentially twisted in one
direction at the winding center. These distributions have
asymmetric exponential tails, with decay constants that de-
pend on the degree of chirality. Strong chirality appears to
lead to quite broad distributions. A remaining challenge is to
t find the complete form of this probability distribution by

solving the two-dimensional diffusion equation with moving
FIG. 9. Difference in minimal energy between directed poly- boundary conditions.

mers of different winding numbers as function of the number of
time steps, averaged over 1019 realizations of randomness.

1/ [Emin(n)'Emin(o)]

For nonideal walks, with a vanishing probability to return
to the origin, the properties of the winding center are ex-
pected to be irrelevant. Both self-avoiding walks dis-2
dimensions, and FLs pinned by point impurities dr- 3,
have wandering exponentslarger than 1/2 and fall in this
category. We present a scaling arguméntpported by nu-
merical data that in this the probability distribution has a
Gaussian form in the variablé/ \int. Not surprisingly, wan-
dering away from the center reduces entanglement. The char-

cteristic width of the Gaussian form is presumably a univer-

puzzle can be solved by realizing that for larg¢he FL
winds back and forth many timéef the order ofyint), even
when it has a small net winding number of 0 or 1. The
fraction of walks of winding number O that never make at
least half a winding vanishes in the limit-c. However, a
walk that has already made half a winding is equally likely to
make a further half winding in either positive or negative

direction, and therefore the probabilities that the path Olgy| constant that has been calculated exactly for self-avoiding

mIrginrﬁlla?rlgrs%tgzsrewéizlggt; dugbﬁglg ?orrlthaer?/vienqu:r?gs an dwalks ind=2. It would be interesting to see if this constant
> only estimated numerically for the impurity pinned FLs in
entanglements of two FLs around each other. The mterac(— y y burity p

tions between the FLs are small at large separatigasy d=3) can be related to other universal properties of the
small density, and the relative distance between the Iineswalk' Changing the correlations of impuritieand hence the

behaves in the same way as the separation of one line fromexponentv) may provide a way of exploring such depen-

columnar defect. In the pure system, we had to distinguisii - o

between repulsi\./e neutrpal any(; attréctive defects Singce i Itis Iik_ely t_hat there are othe_r universality classe_s not

the presence of pc,)int impljrities the line does not.return tgxplored in this paper. The physical problem of FLs in su-

the origin as often, the interaction with the defect is les erconductprs provides sgveral c;and@ates, such as splayed
L : columnar pins or a collection of pins with random strengths.

relevant. In fact, it can be shown that the attraction of th

e . . . L
columnar defect must exceed a finite threshold before it car?ne example is defects with randomly changing chirality,

pin a FL[27]. Thus the results of this section regarding theWhICh induce a change A § in winding angle each time the

Gaussian distribution of the FL winding angle in the pres_I|ne returns to the defect. Such randomness is in fact irrel-

ence of point impurities are expected to hold even for theevant in the limitt—oe, since it does not lead to a systematic

o . ) . change of the variablg. The induced variance i also
more realistic attractive columnar pins. Perhaps not surpris-_ .

: . L o . vanishes as

ingly, the main conclusion is that the pinning to point ran-

domness decreases entanglement.

25A0>2_0 04
Int | (24

(8AX)%=1im Int
VI. DISCUSSION AND CONCLUSIONS =

Topological entanglements present strong challenges téhe underlying problem is certainly quite rich and seems to
our understanding of the dynamics of polymers and fluxcall for developing some form of renormalization group
lines. In this paper, we examined the windings of a single FLanalysis.
around a columnar defect. By focusing on even this simple It is also interesting to search for circumstances in which
physical situation we were able to uncover a variety of interthe degree of winding changes dramatically. To compete
esting properties: The probability distributions for the wind-with the exponential tail of the winding angle distribution,
ing angles can be classified into a number of universalityve need an energy proportional to the winding angle itself; a
classes characterized by the presence or absence of undergnlocal quantity. A possible physical realization is provided
ing Symmetries or relevant |ength scales. by a magnetized directed polymer Wlndlng around a wire. A

The most “symmetric” situation is the windings of an currentl in the wire generates a magnetic field
ideal (Brownian walk around a point center, described by - o
the Cauchy distribution in Eq). Introduction of a finite B(r)— 21 Xr
core for the winding centdior a finite persistence length for cr?
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wherec is the speed of light. Assuming that the polymer maximum possible winding number, proportionalttoA di-
carries a uniform magnetic moment densityaligned with  rected path, although free on length scaled*, is always
its backbone, then leads to an energy coiled in the limit oft—c. However, for a given length a
small decrease in temperature can induce a sharp crossover
Ee_ jtdé N B from a free to a coiled configuration due to the exponential
=—p | dr(t’)-B(r)
0 dependence of the crossover length on temperature. A
similarly sharp crossover occurs for the pinning of a FL to an
dauln attractive columnar defedt] (see Sec. Il . Both transi-
ST T tions are related to the number of returns of a random walk to
the origin which scales as )( We expect similar sharp
proportional to the winding numbe. crossovers between unentangled and braided configurations
In the presence of an energyper winding, and assuming in other cases, such as several FLs winding around each
absorbing boundary conditions, the partition function isother.
given by
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