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We study analytically and numerically the winding of a flux line around a columnar defect. Reflecting and
absorbing boundary conditions apply to marginal or repulsive defects, respectively. In both cases, the winding
angle distribution decays exponentially for large angles, with a decay constant depending only on the boundary
condition, but not on microscopic features.Nonuniversaldistributions are encountered forchiral defects that
preferentially twist the flux line in one direction. The resulting asymmetric distributions have decay constants
that depend on the degree of chirality. In particular, strong chirality encourages entanglements and leads to
broad distributions. We also examine the windings of flux lines in the presence of point impurities~random
bonds!. Our results suggest that pinning to impurities reduces entanglements, leading to a narrow~Gaussian!
distribution.@S1063-651X~96!10606-1#

PACS number~s!: 02.50.2r, 05.40.1j, 74.60.Ge

I. INTRODUCTION AND SUMMARY

Winding angles of paths are of great interest not only in
mathematics, but also in the physics of polymers, and flux
lines in high-Tc superconductors. The topological constraints
produced by the windings of polymers@1# or magnetic flux
lines @2,3# around each other result in entangled phases with
slow dynamics. The simplest case that can be studied is the
winding of a two-dimensional random walk around a point,
or equivalently, a flux line in three dimensions around a co-
lumnar pin @4#. In 1958, Spitzer@5# showed that the prob-
ability distribution for the winding angleu of a Brownian
path around a point is a Cauchy law for large timet, i.e.,

limt→`pS x5
2u

lnt D5
1

p

1

11x2
. ~1!

Similar Cauchy laws are obtained for winding around several
points in two dimensions@6#, and around several straight
lines in three dimensions@7#. These results are obtained by
employing a variety of techniques such as standard diffusion
equation @5,8–10#, path integrals@10,11#, or probability
theory @12,6,7#. By contrast, the winding angle of a self-
avoiding walk in two dimensions obeys a Gaussian distribu-
tion, the scaling variable beingx5u/A4 lnt @13,14#. ~See
also Ref.@15# for an expansion around four dimensions.!

As pointed out in Refs.@16,17#, the above Cauchy law has
pathological properties that make its relevance to any physi-
cal situation questionable. In particular, because of the
slowly decaying tails at largex, the averages of bothu2 and
uuu are infinite. The origin of this divergence is that a finite
segment of the Brownian walk can wind infinitely often
around a point center. While this is correct for an idealized
random walk, in any physical system one expects a cutoff
due to either finite diameters or stiffness. The case of a
Brownian walk in two dimensions around a disk of finite
diameter was studied in Ref.@16#. The resulting winding
angle distribution is@16,18#

lim
t→`

pAS x5
2u

lnt D5
p

4 cosh2~px/2!
. ~2!

In Ref. @17#, the following result for the winding angle dis-
tribution for a random walk with steps of finite size is de-
rived:

lim
t→`

pRS x5
2u

lnt D5
1

2

1

cosh~px/2!
. ~3!

The same result is obtained in Ref.@6# for the distribution of
‘‘big windings’’ of Brownian motion around two pointlike
winding centers. The relation between ‘‘big’’ and ‘‘small’’
windings is discussed in detail in@8#. Saleur@18# suggests
that the difference between Eqs.~2! and~3! is due to differ-
ent boundary conditions for the walkers at the winding cen-
ter. A review of many topological and entanglement proper-
ties of polymers can be found in Ref.@19#.

In this paper, we further study the issue of winding angle
distributions and their universality, with particular emphasis
on their applicability to magnetic flux lines~FLs! in high-
Tc superconductors. We start in Sec. II by providing a deri-
vation of Eqs.~1!–~3! based on conformal properties of ran-
dom walks that do not require any advanced mathematical
techniques. Although these equations have been known for
some time, the difference between Eqs.~2! and~3! seems to
have never been pointed out, except for the above-mentioned
remark in Ref.@18#. Our derivation illustrates well the origin
and universality of the exponential tail in Eqs.~2! and ~3!,
and explains the factor 2 between their two decay constants.
We argue that these two cases are applicable respectively to
the windings of a flux line around a repulsive or marginal
columnar defect. Actually, most columnar defects are attrac-
tive and localize the flux line to their vicinity. The corre-
sponding probability distributions~for walkers with initial
and final points close to the winding center! are also calcu-
lated in Sec. II D.

To test the generality of the analytical results, we per-
formed a number of numerical tests that are described in Sec.
III. Simulations of random walks were performed on both
square and cubic lattices. For reflecting boundary conditions
we chose a winding center that was shifted from the lattice
sites crossed by the walker. For absorbing boundary condi-
tions, the center was one of the lattice sites that the walkers
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were not allowed to cross. A transfer matrix method can be
used to evolve the winding angle distribution with the num-
ber of stepst. Despite a rather slow convergence to the as-
ymptotic limit, the numerical results do indeed support the
universality of distributions given in Eqs.~2! and ~3!.

In the course of numerical tests, we encountered one case
~reflecting boundary conditions for a directed path along the
diagonal of a cubic lattice! that did not conform to any of the
above expected universality classes. Further examination re-
vealed that we had inadvertently constructed achiral defect:
upon encountering the defect, the path had a statistical ad-
vantage to wind in one direction as opposed to the other. In
the language of random walks, this corresponds to a rotating
winding center. The breaking of the symmetry at the center
is in fact a relevant perturbation, and leads to the probability
distribution discussed in Sec. IV. Although we do not yet
have a complete analytic understanding of this universality
class, we can account for certain features of this distribution.
In particular, weak chirality leads to narrow asymmetric dis-
tributions, while for strong chirality both wings of the distri-
bution are widened, i.e., strong chirality of the defect en-
hances entanglements.

All the distributions examined in Secs. II–IV describe the
windings of ideal random walks, and in all cases the appro-
priate scaling variable is the combinationx52u/ lnt. This
universal feature is due to theMarkovian nature of these
walks, and can be explained as follows: After timet, the
walker has a typical distancer (t)}At from the starting
point, which is chosen to be close to the winding center.
Assuming thatr (t) is the only relevant length scale, dimen-
sional arguments, combined with the Markovian property,
suggest thatdr/du5r f (u). The rotational invariance of the
system implies thatf (u) must be a constant; i.e., the increase
in winding angle cannot depend on the number of windings
or angular position. Hence,

du}
dr

r
}
dt

t
5d~ lnt !, ~4!

leading to a scaling variable proportional tou/ lnt.
Because of their non-Markovian nature, we cannot apply

the arguments of the preceding paragraph toself-avoiding
walks. Indeed, such walks have a Gaussian winding angle
distribution in the scaling variablex5u/Alnt @13,14#. The
self-similarity of the walk suggests the following scaling ar-
gument: Starting from the origin, divide the walk into seg-
ments of 1, 2,. . . ,2n't/2 steps. Since theath segment is at
a distance of roughly 2an from the center~with n53/4) and
has a characteristic size of the same order, it is reasonable to
assume that each segment spans a random angleua of order
one. Under the mild assumption that the sumu5(a51

n ua

satisfies the central limit theorem, we then conclude thatu is
Gaussian distributed with a variance proportional ton} lnt.
Similar scaling arguments, suggesting a scaling variable
x5u/Alnt for self-avoiding walks, andx5u/ lnt for ideal
walks were first given in Ref.@13#.

We can ask why the above argument of self-similarity
does not apply to ideal walks. The reason is the relevance of
the finite winding center. An important difference between
ideal and self-avoiding walks is that the probability of return-
ing to the winding center at the origin asymptotically van-

ishes for the latter because of the exclusion zone set up by
self-avoidance. It is thus expected that properties of the
winding center ~size, absorbing versus reflecting nature,
chirality! are irrelevant for self-avoiding walks. The ideal
walks, on the other hand, return to the origin quite often, and
upon rescaling see winding centers of different size. The
assumption that different scaled portions of the ideal walk
are self-similar is not correct.

There is one case where both arguments should hold: An
ideal walk around a point winding center. The argument
based on self-similarity actually states that the final distribu-
tion is obtained from the composition of lnt independent ran-
dom variables. If each variable has a finite variance, the
overall distribution will be Gaussian. If not, other~Levy!
distributions are possible. The Cauchy distribution is in fact
a limiting case for widely distributed variables. The require-
ment that both arguments should hold immediately selects a
Cauchy distribution.

The scaling argument, which by no means is claimed to
be exact, should apply to other self-similar walks where the
probability of return to the origin is small. An interesting
example is provided by directed paths in random media@20#,
which, for example, describe the behavior of a flux line in
the presence of~quenched! point impurities. Typical wander-
ings of such paths scale astn, with n'0.62.1/2. The pin-
ning by impurities greatly reduces the probability of the
walker returning to the origin, and the above arguments
again suggest that the winding angle distribution is Gaussian.
Although certainly not conclusive, the numerical results re-
ported in Sec. V appear to support this prediction. Typical
winding angles thus scale asAlnt as opposed to lnt in the
pure case. This simple example thus suggests that topologi-
cal entanglements become relatively less important in the
presence of pinning to impurities.

The results of this paper point out the rich behavior al-
ready present in the simplest of problems involving topologi-
cal defects. Properties of the winding center~finite size,
chirality, etc.!, interactions, and various types of randomness
are all potentially relevant, leading to different universal dis-
tribution functions. These results could also produce some
interesting physical manifestations. For example, we demon-
strate in Sec. VI that there is a sharp crossover between free
and coiled configurations if there is an energy proportional to
the winding number.

II. DERIVATION OF WINDING ANGLE DISTRIBUTIONS

A. Spitzer’s law

Before studying the winding of a Brownian path around a
center of finite diameter, we first sketch a derivation of
Spitzer’s law in Eq.~1!. We follow the approach in Ref.@12#,
translating it into a more physical language that does not rely
on a familiarity with martingales. A basic ingredient is the
invariance of Brownian motion under conformal mappings.
Let

z~ t !5x1~ t !1 ix2~ t ! ~5!

represent the original walk in the complex two-dimensional
plane. The time evolution of each random walker satisfies
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dz5h~ t !dt, ~6!

where the complex random velocity has zero mean and is
uncorrelated at different times, with

^h~ t !h* ~ t8!&52Dd~ t2t8!. ~7!

The radius of the walker and its winding angle can be ex-
tracted from

z~ t !5 lnz~ t !5r~ t !1 iu~ t !, ~8!

wherer5 lnr5lnAx121x2
2. Sincedz5h(t)dt/z(t), the sto-

chastic motion of the walker in the new complex plane is
highly correlated to its location. This feature can be removed
by defining a new time variable

dt5
dt

uz~ t !u2
~9!

for each walker, which leads to

dz5m~t!dt, with m~t!5z* ~ t !h~ t !. ~10!

Since

^m~t!m* ~t8!&52Duz~ t !u2d~ t2t8!52Dd~t2t8!,
~11!

the evolution ofz(t) is that of a Brownian walk.
For simplicity we choose the initial condition

z(t5t50)50; i.e. the original walker starts out atz51. We
also set the diffusion constant toD51/2, so that the mean
square distance over which the walk moves during a timet is
^r 2(t)&5t. The probability thatr (t) is within an interval
@Apt (12e)/2,Apt (11e)/2# around its mean value ofApt,

p~ t,e!5E
Apt~12e!/2

Apt~11e!/2exp~2r 2/2t !

2pt
2prdr

5E
pt2e/2

pte/2
exp~2s!ds, ~12!

approaches unity in the limitt→`. In this limit, the distance
r from the starting pointz51 is identical to the distance
from the origin, andp(t,e) is identical to the probability that
z(t) is in the interval @0.5(12e)lnt,0.5(11e)lnt#. If we
shrink the complex planez by a factor of (lnt)/2, the walker
is within a distancee of the line with a real value of unity.
Thus, all walks of lengtht in the z plane are mapped on
walks that hit the line with a real value of unity for the first
time. Since there is a separate transformationt(t) for each
walker, walks of the same lengtht map on walks of different
length t. ~To be precise, we also have to shrink the time
scalet when shrinking thez plane, but for simplicity we
denote the new time again byt.)

The imaginary coordinatex of the hit is now related to the
winding angle byx52u(t)/ lnt. Thus, in the limitt→`, the
probabilityp(x)dx is precisely the probability that a Brown-
ian walker (2z/ lnt) starting from the origin hits a vertical
line at a distance one from the origin, for the first time, at a
height betweenx and x1dx. We therefore need the prob-
ability density p1(t) that the first hit is att. Its integral

P1(t)5*0
tdt8p1(t8) is the probability for the walker to hit

the line at least once before timet. Since after hitting the
wall the walker is equally likely to proceed in either direc-
tion, the latter is also twice the probability that the end point
of the walk is beyond the line att, and hence given by

P1~t!52E
1

`exp~2r 2/2t!

A2pt
dr5E

0

texp~21/2s!

A2ps3
ds.

The derivative gives

p1~t!5
dP1
dt

5
1

A2pt3
expS 2

1

2t D .
Since the vertical and horizontal components of the walk are
independent, we finally obtain

p~x!5E
0

`

dt
exp~21/2t!

A2pt3
exp~2x2/2t!

A2pt
5
1

p

1

11x2
,

which is Spitzer’s law, exact in the limitt→`.

B. Repulsive defects and finite absorbing centers

The unphysical situation that a path element of finite
length can wind infinitely often around the origin can be
removed by introducing a winding center of finite size. A FL
winding around a repulsive columnar defect cannot penetrate
the defect, and all configurations where the FL and the defect
intersect have to be removed@16#. This situation corresponds
to a random walk around an absorbing winding center. Two
directed polymers with hard-core interaction winding around
each other are described by the same situation, the radiusr
now being the relative distance between the two polymers.

We choose a disk of radiusR,1 around the origin, which
cannot be entered by the Brownian walkz(t). A path of
length t now has a maximum winding angle oft/R. The
walk is again started fromz(0)51, and after a long timet,
its end point is almost certainly at a distancer between
Apt (12e)/2 andApt (11e)/2 from the origin, as given by Eq.
~12!. ~The excluded disk of radiusR!At has negligible in-
fluence in this limit.! The random walks in the complex
plane z5 lnz consequently have real values in the interval
@0.5(12e)lnt,0.5(11e)lnt# as before. But now the walks
z(t) cannot go to the left of a line ata5 lnR. The probability
densitypA(x) for having a scaled winding anglex52u/ lnt is
therefore identical to the probability density that a random
walk starting at the origin hits a line at distance one, for the
first time, at heightx without going beyond a line at distance
2u lnRu/lnt on the opposite side.

Let Pa,b(y,t) denote the probability that a Brownian
walk starting atyP@a,b# hits the pointb for the first time
during a time intervalt, without hitting pointa previously.
If we consider the pointsa andb as absorbing boundaries,
this is identical to the probability that the walk is absorbed at
boundaryb before timet. Since for sufficiently smallDt,
the walker is only a short distanceDy from its starting point,
we have
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Pa,b~y,t!5E
0

`

d~Dy!
1

A2pDt
expF2

~Dy!2

2Dt G
3@Pa,b~y1Dy,t2Dt!

1Pa,b~y2Dy,t2Dt!#.

Expanding the above equation to the order ofDt indicates
thatPa,b(y,t) satisfies a diffusion equation. The appropriate
boundary conditions arePa,b(a,t)50 and Pa,b(b,t)51
with the initial valuePa,b(y,0)50, resulting in@21#

Pa,b~y,t!5
y2a

b2a
1
2

p (
n51

`
~21!n11

n
sinS pn~y2a!

b2a D
3expF2

1

2 S pn

b2aD
2

tG .
The probability that the walk is absorbed at the right-hand
boundary during the time interval @t,t1dt# is
dt]tPa,b(y,t). Note, however, that *0

`dt]tPa,b(y,t)
5(y2a)/(b2a), i.e., equal to the total fraction of particles
absorbed at the right-hand boundary~inversely proportional
to the separations from the boundaries!. To calculate
pA(x), we need the fraction of these walks absorbed between
t and t1dt, equal to@(b2a)/(y2a)#]tP. Hence ~with
a52 lnR/lnt, b51 andy50)

pA~x!5E
0

`

dt
12a

2a

]Pa,1~0,t!

]t

exp~2x2/2t!

A2pt

5E
0

`

dt (
n51

`
~21!n11

A2pt

pn

a~12a!
sinS pna

12aD
3expF2

1

2 S pn

12aD
2

t2
x2

2tG
5 (

n51

`
~21!n11

a
sinS pna

12aDexpF2
pnuxu
~12a!G .

The last step is achieved by first performing a Fourier trans-
form with respect tox, followed by integrating overt, and
finally inverting the Fourier transform.~Alternatively, thet
integration can be performed by the saddle point method.! In
the limit of larget, the variablea is very small, and we can
replace the sine function by its argument. Taking the sum
over n, we find

pA~x!5
p

12a

exp@px/~12a!#

$exp@px/~12a!#11%2
. ~13!

Changing the variable fromx to

x̃5
x

~12a!
5

2u

ln~ t/R2!
,

and noting thatpA(x)dx5pA( x̃)dx̃, leads from Eq.~13! to

pAS x̃5
2u

ln~ t/R2! D5
p

4 cosh2~p x̃/2!
. ~14!

This is identical to Eq.~2!, sincex̃5x for larget. The use
of the variablex̃ is, however, more appropriate, since it
makes the argument of the logarithm dimensionless, and ex-
plicitly indicates the basic time unit. The above distribution,
which is exact in the limitt→`, has an exponential decay
for largex̃, in contrast to Spitzer’s law in Eq.~1!. In particu-
lar, the mean winding angle is now finite. The analogy to
random walkers in the planez, confined by the two walls,
provides simple physical justifications for the behavior of the
winding angle. In the presence of both walls, the diffusing
particle is confined to a strip, and loses any memory of its
starting position at long times. The probability that a particle
that has already traveled a distanceu in the vertical direction
proceeds a further distancedu without hitting either wall is
thus independent ofu, leading to the exponential decay. On
the other hand, if there is no confining wall on the left-hand
side, the particles may diffuse arbitrarily far in that direction,
making it less probable to hit the wall on the right hand side.
The absence of a characteristic confining length thus leads to
the unphysical divergence in Spitzer’s law.

We also expect that different shapes of the winding center
do not modify Eq.~14!. This is because of the division by
lnt/2, which maps any excluded shape to the vertical line at
a50 for long enough times. However, different shapes
should result in different effective values forR, and the time
constant in Eq.~14!. For long times, the polar angle of the
particle may take any value between 0 and 2p with equal
probability, and the particle sees an averaged radius of the
winding center.

The crossover to Spitzer’s law in the limitR→0 is not
apparent from the above expression forpA(x). The transition
can be made in the initial equation forpA(x), but not in the
final result of Eq.~14!, where time is measured in units of
R2. The time scale in Spitzer’s law is set by the distance of
the initial point from the winding center, which is infinite in
units of the radius of the winding center. Consequently one
time unit in Eq.~1! corresponds to infinitely many time units
in Eq. ~14!, and the limitst→` orR→0 or x̃→0 in Eq.~14!
correspond to the limitt→0 or x→` in Eq. ~1!.

C. Neutral defects and reflecting winding centers

For windings around several point centers, or the winding
of a random walk on a lattice around a point different from
the vertices of the lattice@6,17#, no configurations are forbid-
den, and no walks are removed. The resulting winding angle
distribution in both cases is given by Eq.~3!. The random
walk on a lattice can be regarded as a model for a directed
polymer of finite stiffness, the step size being of the order of
the persistence length. This situation applies to magnetic FLs
winding around a columnar defect that is marginal, i.e., nei-
ther attractive nor repulsive. We can obtain Eq.~3! by re-
peating the calculations of the previous subsection, but re-
placing the absorbing boundary conditionPa,b(a,t)50 with
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the reflecting condition]Pa,b(y,t)/]yuy5a50. There is thus
no current leaving the system at pointa, and walkers that hit
the winding center are reflected. We then find

Pa,b~y,t!512
2

p (
n50

`
1

n11/2
sin S p~n11/2!~b2y!

b2a D
3expF2

1

2 S p~n11/2!

b2a D 2t G ~15!

and

pR~x!5E
0

`

dt
]Pa,1~0,t!

]t

exp~2x2/2t!

A2pt

5 (
n50

`
1

12a
sinS p~n11/2!

12a D
3expF2

p~n11/2!uxu
~12a! G

5
1

2~12a!cosh~px/2!
,

or, equivalently,

pR~ x̃!5
1

2 cosh~p x̃/2!
, ~16!

where again time is measured in units ofR2, and the limit
t→` has been taken. For largex̃, where the walk has lost
the memory of its initial distance from both walls, this prob-
ability decays exponentially as exp(2px̃/2). A random walk
confined between an absorbing and a reflecting wall that
have a distance 1 can be mapped to a random walk confined
between two absorbing walls at distance 2. After rescaling
the wall distance and thex̃ coordinate by two, this explains
the factor 1/2 between the decay constants in the tails of the
distributions in Eqs.~2! and ~3!.

D. Attractive defects and returning walks

A magnetic FL winding around an attractive columnar
defect of radiusb0 and binding energyU0 per unit length is
bound to that defect. If the temperature is above a crossover
temperatureT*}b0AU0, the line is only weakly bound and
wanders horizontally over the distance of the localization
length l'(T).b0exp@(T/T* )

2# @4#. The mean vertical dis-
tancel z between consecutive intersections of the FL with the
defect is consequently proportional tol'

2 . Over this distance
the FL can be approximated by a directed walk, which re-
turns to its starting point~the winding center! after a time
l z .

Using the result in Eq.~14!, we can derive the winding
angle distributionpA

o( x̃) for such confined random walks.
Each walk that returns to its starting point after timet ~in the
z plane! is composed of two walks of lengtht/2 going from
the starting point toz(t/2). As we have seen in Sec. II A,
almost all walks of lengtht/2, when mapped on the plane
2z/ ln(t/2), have their end point on a vertical wall at distance
1 from the origin. The winding angle distribution for these

walks is given by Eq.~14!, with t replaced byt/2. The prob-
ability that a walk that returns to its starting point has a
winding angleu is therefore obtained by adding the prob-
abilities of all combinations of two walks of lengtht/2 whose
winding angles add up tou, i.e.,

pA
o~ x̃!5E

2`

`

dy
p

4 cosh2~py!

p

4 cosh2@p~ x̃2y!#

5
p

2 sinh2~p x̃/2! S p x̃

2
cothS p x̃

2 D21D , ~17!

where x̃52u/ ln(t/2R2). Surprisingly, this result is different
from the one given in Eq.~4.1! of Ref. @18#. We are not sure
of the origin of this discrepancy, but note that the result in
Ref. @18# has a divergence atx̃50 that is unphysical.

If in place of convoluting two absorbing probability dis-
tributions, as in Eq.~17!, we use the probability distributions
for reflecting boundary conditions, the final result is modified
to

pR
o~ x̃!5

x̃

2

1

sinh~p x̃/2!
. ~18!

For large x̃'x, the above two expressions decay as
x exp(2px) andx exp(2px/2), respectively. A FL of length
L is broken up into roughlyL/ l z segments between contacts
with the attractive columnar defect. We can assume that the
winding angle of each segment is independently taken from
the probability distribution in Eq.~17! with t' l z . Adding
the winding angle distributions of all segments leads to a
Gaussian distribution centered aroundu50, and with a vari-
ance proportional toL ln(lz)/lz. Similar Gaussian distribu-
tions are also obtained for diffusion confined to a disk of
finite radius@22#.

III. UNIVERSALITY OF THE WINDING ANGLE
DISTRIBUTION

At first sight it may seem surprising that the winding
angle distribution in Eq.~16! for random walks around a
reflecting center of finite diameter is identical to the distri-
bution of ‘‘large windings’’ for Brownian motion around
two pointlike centers@6#, or to distribution for random walks
of finite step size@17#. The increase in winding angle is
largest when the walk is close to the winding center, and
should thus be quite sensitive to the lattice structure, or the
ratio between step size and winding center size. However, a
closer examination of the random walks in the scaledz plane
reveals that, in the limitt→`, almost no increase in the
variable x̃ occurs when the walker is within a certain finite
distance from the winding center~corresponding to an infi-
nitely small distance from the reflecting wall in the scaled
z plane!. A similar conclusion was reached in Ref.@8#, where
the two-dimensional plane is divided into three concentric
regions. It is shown that the contribution of the middle region
to the winding angle scales asAlnt, compared to a contribu-
tion proportional to lnt in the outer region. Hence, micro-
scopic details do not enter the winding angle distribution,
and Eq.~16! holds as long as there is a winding center of
nonvanishing size~or, equivalently, an upper cutoff to the
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maximum possible winding angle per unit time!, and as long
as no walk coming close to the winding center is absorbed.

If a walk hitting the winding center is absorbed with a
nonvanishing probability, almost all walks are absorbed in
the limit t→`, and the winding angle distribution of the
surviving walks is given by Eq.~14!. As for reflecting
boundary conditions, microscopic details of the system do
not influence this distribution. Apart from these two univer-
sality classes, we shall later encounter a third class of walks
corresponding to random motion around a rotating winding
center; the winding angle distribution in this case depends on
the rotation speed of the center. In this section, we check
numerically the former situations, where the symmetry be-
tween6u is not broken.

We performed computer simulations of random walks on
a square lattice with both reflecting and absorbing boundary
conditions. Reflecting boundary conditions are simply real-
ized by choosing a winding center different from the vertices
of the lattice, and thus never crossed by the walker. On the
other hand, to simulate absorbing boundary conditions, the
winding center is chosen as one of the lattice sites~say the
origin!, but no walk is allowed to go through this point.

The winding angle distributions are most readily obtained
using a transfer matrix method that calculates the number of
all walks with given winding angle and given end point after
t steps, from the same information aftert21 steps. The
winding center is at (0.5,0.5) for reflecting boundary condi-
tions, and at the origin for absorbing boundary conditions.
The walker starts at~1,0!, and the winding angle is increased
or decreased by 2p every time it crosses the positive branch
of the x1 axis. Due to limitations in computer memory, we
applied a cutoff in system size and winding angle for times
t.120, making sure that the results are not affected by this
approximation. The largest times used,t59728, required ap-
proximately 3 days to run on a Silicon Graphics Indy Work-
station.

Figures 1 and 2 show the simulation results for the two
cases. The asymptotic exponential tails predicted by theory
can clearly be seen; deviations from the theoretical curve for

smaller values of the scaling variablex52u/ ln(2t) are due to
the slow convergence to the asymptotic limit. Since the scal-
ing variable depends logarithmically on time, the asymptotic
limit is reached only for large lnt. Note that the only free
parameter in fitting to the analytical form is the characteristic
time scale appearing inside the logarithm. Witht measured
in units of single steps on the lattice, we found that a factor
2 in the scaling variable provides the best fit. In the limit
t→`, different scales oft give of course the same asymp-
totic winding angle distribution.

To further test the universality of these distributions, we
also performed simulations of a flux line~directed path! pro-
ceeding along the diagonal of a cubic lattice in three dimen-
sions. The FL starts at (1,0,0), and at each step increases one
of its three coordinates by 1. We determined the winding
angle distribution around the diagonal (1,1,1) direction, ex-
cluding from the walk all points that are on this diagonal~a
repulsive columnar defect, corresponding to the case of an
absorbing winding center!. The excluded points lie on the
origin when the FL is projected in a plane perpendicular the
diagonal. A cutoff of 243 in system size was imposed for the
transfer matrix calculations. The winding angle distribution
p(x52u/ lnt) is shown in Fig. 3 for different times. As for
the square lattice, an exponential tail with a decay constant
of p can be seen clearly. Our numerical results, as well as
the analytical considerations, thus indicate clearly that the
winding angle distributions for reflecting and absorbing
boundary conditions are universal and do not depend on mi-
croscopic details.

Due to the special properties of directed paths along the
diagonal of the cube, the case of reflecting boundary condi-
tions leads to an asymmetry between windings in positive
and negative directions. This is because it takes only three
steps to make the smallest possible winding in one direction,
but six steps in the opposite direction. This situation is dis-
cussed in detail in Sec. IV.

IV. CHIRAL DEFECTS
AND ROTATING WINDING CENTERS

So far, we have only considered situations that are sym-
metric with respect to the angles6u. For directed paths on

FIG. 1. Winding angle distribution for random walks on a
square lattice withreflectingboundary conditions fort538 ~dot-
dashed!, 152 ~long dashed!, 608 ~dashed!, 2432~dotted!, and 9728
~solid!. The horizontal axis isx52u/ ln(2t). The thick solid line is
the analytical result of Eq.~ 3!.

FIG. 2. Winding angle distribution for random walks on a
square lattice withabsorbingboundary conditions. The symbols
and the variablex are the same as in the previous figure. The thick
solid line is the analytical result of Eq.~ 2!.
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certain lattices, however, this symmetry is broken, as men-
tioned in Sec. III. A directed walk that proceeds at each step
along the1x1 , 1x2 , or1x3 direction on a cubic lattice can
be mapped on a random walker on a two-dimensional trian-
gular lattice as indicated in Fig. 4~a!. Each bond can be
crossed in only one direction, and the winding center for
reflecting boundary conditions must be different from the
vertices of the lattice. It is apparent from this figure that the
random walker can go around the center in three steps in one
angular direction, but in no less than six steps in the other
direction.

An alternative description is obtained by examining the
position of the walker after every three time steps. The re-
sulting coarse-grained random walk takes place on a regular
triangular lattice, but now the walker has a finite probability
of 332/3352/9 of staying at the same site. If this site is one
of the three points next to the winding center, the winding
angle is increased by 2p in one of the six possible configu-
rations that return to the site after three steps. In other words,
the walker has a finite probability of having its winding
angle increased in the proximity of the center. The amount of
this biased increase in angle depends on the structure of the
lattice and will be different for other directed lattices. An
equivalent physical situation occurs for Brownian motion
around a rotating winding center, e.g., a rotating reflecting

disk that does not set the surrounding gas or liquid into mo-
tion.

Since this angular symmetry breaking is already present
in the above simple example of a directed walk, it is also
likely to occur in more realistic physical systems, such as
with screw dislocations. We thus use the termchiral colum-
nar defect to indicate that each time the FL comes close to
the defect, it finds it easier to wind around in one direction as
opposed to the other.~Of course, to respect the reflecting
boundary conditions, there must be no additional interaction
with the defect.! After mapping to the rescaledz plane in-
troduced in Sec. II, the above situations can be modeled by
an upward moving reflecting wall on the vertical axis. Each
time a Brownian walker hits this wall, its vertical position
x52u/ lnt is increased by a small amount 2Du/ lnt. Let us
now determine the net shiftDx in x due to the motion of the
wall for a walker that survives for a timet in the rescaled
z plane, before it is absorbed at the right-hand wall~recall
that t is the time in the original system, whilet refers to the
time in the rescaledz plane, after the conformal mapping!.

To obtain the full solution, it is necessary to solve the
two-dimensional diffusion equation with moving boundary
conditions. Since we are mainly interested in the exponential
tails of the winding angle distribution, we restrict our analy-
sis to the limit of large timest, and determine the shift in
x due to encounters with the reflecting moving wall in this
limit. A Brownian walker that has survived for a sufficiently
long time t forgets its initial horizontal position. The mean
number of encounters with the reflecting wall, and conse-
quently the shiftDx in x due to the motion of the wall, is
then expected to be simply proportional to the considered
time interval. Assuming the validity of the central limit theo-
rem in the limitt→`, the probability distribution ofDx is
given by

pD~Dx!5
1

A2pb2t
expF2

~Dx2at!2

2b2t G . ~19!

The parametersa and b are related to the velocity of the
wall ~chirality of the defect! by a}b}v. Presumably Eq.
~19! can be obtained directly from properties of random
walks, providing the exact coefficients in the above propor-
tionality.

We can now modify Eq.~16! to

pR
c ~x!5E

0

`

dtE
2`

`

d~Dx!pD~Dx!
]Pa,1~0,t!

]t

3
1

A2pt
expF2

~x2Dx!2

2t G
5E

0

`

dt
]Pa,1~0,t!

]t

3
1

A2pt~11b2!
expF2

~x2at!2

2t~11b2!G .
In the limit of largex it is sufficient to take the first term in
the series expansion forPa,1(0,t) given in Eq.~15!, leading
to

FIG. 3. Winding angle distribution around the preferred direc-
tion for a flux line ~directed path! in three dimensions fort5243
~dot-dashed!, 729 ~long dashed!, 2187~dashed!, 6561~dotted!, and
19 684~solid!. The horizontal axis isx52u/ ln(2t). The thick solid
line is the analytical result of Eq.~ 2!.

FIG. 4. Triangular and square lattices with directed bonds. The
winding centers are indicated by the open circle.
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pR
c ~x!5expF ax

11b2 2
uxu

11b2Aa21
p2

4
~11b2!G ,

~20!

valid for large uxu. The effect of the moving wall on the
winding angle distribution is thus a systematic shift in the
slopes of the exponential tails. For small values of chirality
the slopes on the two sides are changed top/26a. Due to
the velocity dependence, these asymmetric distributions are
clearly nonuniversal. At large chiralities the slopes vanish as
a/b2, resulting in quite wide distributions. Apparently
strong chirality of a defect increases the probability of en-
tanglements. The scaling variable isx52u/ ln(2t). The thick
solid line is the distribution Eq.~ 3!.

Figure 5 shows our simulation results for the winding
angle distribution for a walk on the above mentioned di-
rected triangular lattice. The asymmetry due to the shift is
clearly visible, and the winding angle distribution is wider
than for a stationary wall. This case thus exemplifies the
strong chirality limit discussed in the previous paragraph.
We also simulated a square lattice with directed bonds as
indicated in Fig. 4~b!. The corresponding winding angle dis-
tribution is shown in Fig. 6. The distribution is again asym-
metric, but not as wide as in the previous one, and more
similar to that expected in the weak chirality regime.

A somewhat different situation is discussed in Ref.@24#,
where the winding of a polymer around an attractive and
chirally asymmetric rod is studied. Below the localization
temperature, the polymer is bound to the rod and has a finite
mean winding angle proportional to its length. Above the
localization temperature, the chirality has no effect at all on
the winding angle, due to the hard-core repulsion at short
distances, a situation that corresponds to absorbing boundary
conditions. We expect that the reflecting boundary condi-
tions discussed in this section may be relevant near the lo-
calization temperature.

V. WINDING ANGLES IN RANDOM MEDIA

FLs in high-Tc superconductors are pinned by oxygen im-
purities. Such pinning is quite essential to enhancing the cur-
rent carrying capacity of the superconductor in its mixed
phase@23#. Actually, the pinning to the~quenched! random
impurities fundamentally modifies the properties of FLs,
leading to glassy phases. The simplest example is again a
single FL as discussed in the previous section. The behavior
of the FL in the presence of point impurities can be modeled
by a directed path on a lattice with random bond energies
@20#. In three or fewer dimensions, the line is always pinned
at sufficiently long length scales. An important consequence
of the pinning is that the path wanders away from the origin
much more than a random walk, its transverse fluctuations
scaling as tn, where n'0.62 in three dimensions, and
n52/3 in two dimensions@25,26#. The probability of such
paths returning to the winding center are thus greatly re-
duced, and the winding probability distribution is expected to
change.

We examined numerically the windings of a directed path
along the diagonal of a cubic lattice@see Fig. 4~a!#. To each
bond of this lattice was assigned an energy randomly chosen
between 0 and 1. Since the statistical properties of the pinned
path are the same at finite and zero temperatures, we deter-
mined the winding angle of the path of minimal energy by a
transfer matrix method. For each realization of randomness
this method@20# finds the minimum energy of all paths ter-
minating at different points, and with different winding num-
bers. This information is then updated from one time step to
the next. From each realization we thus extract an optimal
angle as a function oft. The probability distribution is then
constructed by examining 2700 different realizations of ran-
domness. To improve the statistics, we averaged over posi-
tive and negative winding angles.

The resulting distributions are shown in Figs. 7 and 8. The
scaling variable in Fig. 8 is 2u/ lnt and the results are com-
pared to Eq.~2!, which is expected in the pure system. A
much better fit is achieved with the scaling variable
x5u/2Alnt as indicated in Fig. 7. This scaling form is moti-
vated by that of self-avoiding walks, which in two dimen-

FIG. 5. Winding angle distribution around the preferred direc-
tion for a random walk on a directed triangular lattice fort5243
~dot-dashed!, 729 ~long dashed!, 2187~dashed!, 6561~dotted!, and
19 684~solid!. The scaling variable isx52u/ ln(2t). The thick solid
line is the distribution given in Eq.~3!.

FIG. 6. Winding angle distribution for a random walk on a
directed square lattice fort538 ~dot-dashed!, 152 ~long dashed!,
608 ~dashed!, 2432~dotted!, and 9728~solid!.
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sions follow a Gaussian distribution

pSAS x5
u

2Alnt D 5
1

Ap
exp~2x2!. ~21!

The result of the data collapse in Fig. 7 agrees well with the
Gaussian distribution

prandS x5
u

2Alnt D 5A1.5

p
exp~21.5x2!. ~22!

Directed paths in random media and self-avoiding walks
share a number of features that make the similarity in their
winding angle distribution plausible. Both walks meander
away with an exponent larger than the random walk value of
1/2. ~The exponent of 3/4 for self-avoiding walks is larger
than n'0.62 for FLs in three dimensions.! As a result, the
probability of returns to the origin is vanishingly small in the

t→` for both paths, and thus the properties of the winding
center are expected to be irrelevant.@A simple scaling argu-
ment suggests that the number of returns to the origin scale
asN(t)}1/t122n.# The conformal mapping of Sec. II cannot
be applied in either case: The density and size of impurities
in a random medium becomes coordinate dependent under
this mapping, as does the excluded volume effect. The wind-
ing angle distribution for self-avoiding walks in Eq.~21! has
been calculated using a more sophisticated mapping@14,18#.
As a similar exact solution is not currently available for FLs
in random media, we resort to the scaling argument pre-
sented next.

Let us divide the self-avoiding walk, or the directed path,
in segments going fromt/2 to t, from t/4 to t/2, etc., down to
some cutoff length of the order of the lattice spacing, result-
ing in a total number of segments of the order of lnt. The
statistical self-similarity of the walks suggests that a segment
of length t/2n can be mapped onto a segment of length
t/2n11 after rescaling by a factor of 1/2n. Under this rescal-
ing, the winding angle is~statistically speaking! conserved,
and consequently all segments have the same winding angle
distribution. Convoluting the winding angle distributions of
all segments, and assuming that the correlations between
segments do not invalidate the applicability of the central
limit theorem, leads to a Gaussian distribution with a width
proportional to lnt. This argument does not work for the
random walks considered in Secs. II B–II D, since the finite
radius of the winding center is a relevant parameter. Differ-
ent segments of the walk are therefore not statistically
equivalent, as they see a winding center of different radius
after rescaling.

Another interesting quantitity to study is the difference in
free energy between configurations of different winding
numbers. This provides an estimate of the free energy that
can be gained~or lost! by a FL upon changing its degree of
entanglement. In the pure system, this quantity can be ob-
tained directly from the winding angle distribution. For large
t, the difference in free energy between configurations of
winding numbern and 0 is calculated by expanding Eq.~2!
for small x54pn/ lnt, and is given by

F~n!2F~0!5kBT
2p4n2

~ lnt !2
. ~23!

~The corresponding result for absorbing boundary conditions
is larger by a factor 2.!

In the presence of quenched randomness, there exists no
obvious relation between the free energy and the entropy,
and we therefore determined the difference between energies
of minimal paths of different winding numbers. The simula-
tion results are depicted in Fig. 9, suggesting a 1/lnt depen-
dence on length, although we cannot rule out some larger
power of 1/lnt. The slopes of the curves in this figure have
ratios of approximately 1/3, 1/6, and 1/2, different from 1/4,
1/9, and 4/9 for ann2 dependence. We could not collapse the
data using the scaling variablen/Alnt as in Fig. 7. Somewhat
surprisingly, the difference in energy vanishes in the larget
limit, as in Eq. ~23!. Naive arguments may have suggested
that the energy cost associated with changing the winding
number either saturates at a finite value, or possibly even
grows ast2n21 as in typical energy fluctuations@20#. This

FIG. 7. Winding angle distribution for a directed path in a ran-
dom three-dimensional system fort5120 ~dotted!, 240 ~dashed!,
480 ~long dashed!, 960 ~dot-dashed!, and 1920~solid!. The thick
solid line is the Gaussian distribution in Eq.~22!.

FIG. 8. Same distribution as in previous figure, but with
x52u/ lnt. The thick solid line is the distribution for the pure case
given in Eq.~2!.
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puzzle can be solved by realizing that for larget the FL
winds back and forth many times~of the order ofAlnt), even
when it has a small net winding number of 0 or 1. The
fraction of walks of winding number 0 that never make at
least half a winding vanishes in the limitt→`. However, a
walk that has already made half a winding is equally likely to
make a further half winding in either positive or negative
direction, and therefore the probabilities that the path of
minimal energy has winding number 0 or 1 are equal.

Similar results are expected to hold for the windings and
entanglements of two FLs around each other. The interac-
tions between the FLs are small at large separations~very
small density!, and the relative distance between the lines
behaves in the same way as the separation of one line from a
columnar defect. In the pure system, we had to distinguish
between repulsive, neutral, and attractive defects. Since in
the presence of point impurities the line does not return to
the origin as often, the interaction with the defect is less
relevant. In fact, it can be shown that the attraction of the
columnar defect must exceed a finite threshold before it can
pin a FL @27#. Thus the results of this section regarding the
Gaussian distribution of the FL winding angle in the pres-
ence of point impurities are expected to hold even for the
more realistic attractive columnar pins. Perhaps not surpris-
ingly, the main conclusion is that the pinning to point ran-
domness decreases entanglement.

VI. DISCUSSION AND CONCLUSIONS

Topological entanglements present strong challenges to
our understanding of the dynamics of polymers and flux
lines. In this paper, we examined the windings of a single FL
around a columnar defect. By focusing on even this simple
physical situation we were able to uncover a variety of inter-
esting properties: The probability distributions for the wind-
ing angles can be classified into a number of universality
classes characterized by the presence or absence of underly-
ing symmetries or relevant length scales.

The most ‘‘symmetric’’ situation is the windings of an
ideal ~Brownian! walk around a point center, described by
the Cauchy distribution in Eq.~1!. Introduction of a finite
core for the winding center~or a finite persistence length for

the walk! leads to a number of exponentially decaying dis-
tributions: If there is a conservation law for the walkers~re-
flecting boundaries or neutral defects!, we obtain the distri-
bution in Eq. ~3!. Removing this conservation~absorbing
boundaries or repulsive defects! leads to the distribution in
Eq. ~2! whose tails decay twice as fast. Constraining the end
points of the walker to the vicinity of the winding center
leads to the related distributions in Sec. II D.

A completely new set of distributions is obtained for chi-
ral defects, where the walker is preferentially twisted in one
direction at the winding center. These distributions have
asymmetric exponential tails, with decay constants that de-
pend on the degree of chirality. Strong chirality appears to
lead to quite broad distributions. A remaining challenge is to
find the complete form of this probability distribution by
solving the two-dimensional diffusion equation with moving
boundary conditions.

For nonideal walks, with a vanishing probability to return
to the origin, the properties of the winding center are ex-
pected to be irrelevant. Both self-avoiding walks ind52
dimensions, and FLs pinned by point impurities ind53,
have wandering exponentsn larger than 1/2 and fall in this
category. We present a scaling argument~supported by nu-
merical data! that in this the probability distribution has a
Gaussian form in the variableu/Alnt. Not surprisingly, wan-
dering away from the center reduces entanglement. The char-
acteristic width of the Gaussian form is presumably a univer-
sal constant that has been calculated exactly for self-avoiding
walks ind52. It would be interesting to see if this constant
~only estimated numerically for the impurity pinned FLs in
d53) can be related to other universal properties of the
walk. Changing the correlations of impurities~and hence the
exponentn) may provide a way of exploring such depen-
dence.

It is likely that there are other universality classes not
explored in this paper. The physical problem of FLs in su-
perconductors provides several candidates, such as splayed
columnar pins or a collection of pins with random strengths.
One example is defects with randomly changing chirality,
which induce a change6Du in winding angle each time the
line returns to the defect. Such randomness is in fact irrel-
evant in the limitt→`, since it does not lead to a systematic
change of the variablex. The induced variance inx also
vanishes as

~dDx!2. lim
t→`

lntS 2dDu

lnt D 250. ~24!

The underlying problem is certainly quite rich and seems to
call for developing some form of renormalization group
analysis.

It is also interesting to search for circumstances in which
the degree of winding changes dramatically. To compete
with the exponential tail of the winding angle distribution,
we need an energy proportional to the winding angle itself; a
nonlocal quantity. A possible physical realization is provided
by a magnetized directed polymer winding around a wire. A
currentI in the wire generates a magnetic field

BW ~rW !5
2IW3rW

cr2
,

FIG. 9. Difference in minimal energy between directed poly-
mers of different winding numbers as function of the number of
time stepst, averaged over 1019 realizations of randomness.
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where c is the speed of light. Assuming that the polymer
carries a uniform magnetic moment densitym aligned with
its backbone, then leads to an energy

E52mE
0

t

drW~ t8!•BW ~rW !

52
4pmIn

c
[en,

proportional to the winding numbern.
In the presence of an energye per winding, and assuming

absorbing boundary conditions, the partition function is
given by

Z5E
2`

`

dn expS 2
en

kBT
D p

4 cosh2~2p2n/ lnt !
,

wheren5u/2p is the winding number,kB the Boltzmann
constant, andT is the temperature. The integral ‘‘diverges’’
if t>t*5exp(4p2kBT/e), a cutoff only being given by the

maximum possible winding number, proportional tot. A di-
rected path, although free on length scalest,t* , is always
coiled in the limit oft→`. However, for a given lengtht, a
small decrease in temperature can induce a sharp crossover
from a free to a coiled configuration due to the exponential
dependence of the crossover lengtht* on temperature. A
similarly sharp crossover occurs for the pinning of a FL to an
attractive columnar defect@4# ~see Sec. II D!. Both transi-
tions are related to the number of returns of a random walk to
the origin which scales as ln(t). We expect similar sharp
crossovers between unentangled and braided configurations
in other cases, such as several FLs winding around each
other.
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